
Deep Learning Architecture –CS812

 (Elective Course – 8th Semester CS&E)

 Dr.Srinath.S, Associate Professor

 Department of Computer Science and Engineering

 SJCE, JSS S&TU, Mysuru- 570006

Dr.Srinath.S

Pre - Requisite

 Linear Algebra

 Elementary Probability and Statistics

 Machine Learning / Pattern Recognition.

 Programming skills – Python preferred

Dr.Srinath.S

Course Outcomes

 After completing this course, students should be able
to:

 CO1: Identify the deep learning algorithm which are
more appropriate for various types of learning tasks in
various domains

 CO2: Implement deep learning algorithm and solve
real world problems

 CO3: Execute performance metrics of deep learning
techniques.

Dr.Srinath.S

Text/Reference Books/web

resource/CO mapping
Text Book:

Sl.

No.
Author/s Title Publisher Details

1 Aurelien Geron Hands on Machine Learning with

Scikit-Learn &TensorFlow

O’Reilly, 2019

Reference Books:
Sl.

No.
Author/s Title Publisher Details

1 Lan Good fellow and

Yoshua Bengio and

Aaron Courville

Deep Learning MIT Press2016

2 Charu C. Aggarwal Neural Networks and Deep

Learning

Springer International

Publishing, 2018

3 Andrew W. Trask Grokking Deep Learning Manning Publications

4 Sudharsan

Ravichandran

Hands-On Deep Learning

Algorithms with Python

--

Web Resources:
Sl. No. Web link

1 https://onlinecourses.nptel.ac.in/noc20_cs62/preview

2 https://nptel.ac.in/courses/106/105/106105215/

Course

Outcomes

Program Outcomes PSO’s

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P012 PSO1 PSO2 PSO3 PSO4

CO-1 1 2 3 1 3 3 1 3 3 3 3 3 2 3 3 3

CO-2 3 3 3 3 3 2 2 2 1 2 3 2 1 2 3 2

CO-3 3 1 2 3 1 2 2 2 3 3 3 2 3 2 3 3

0 -- No association 1---Low association, 2--- Moderate association, 3---High association

Dr.Srinath.S

Assessment Weightage in Marks

 Class Test –I 10

 Quiz/Mini Projects/ Assignment/ seminars 10

 Class Test – II 10

 Quiz/Mini Projects/ Assignment/ seminars 10

 Class Test – III 10

 Total 50

Dr.Srinath.S

Question Paper Pattern

 Semester End Examination (SEE)

 Semester End Examination (SEE) is a written examination of three hours
duration of 100 marks with 50% weightage.

 Note:

 • The question paper consists of TWO parts PART- A and PART- B.

 • PART- A consists of Question Number 1-5 are compulsory

(ONE question from each unit)

 • PART-B consists of Question Number 6-15 will have internal choice.

(TWO question from each unit)

 • Each Question carries 10 marks and may consist of sub-questions.

 • Answer 10 full questions of 10 marks each

Dr.Srinath.S

Source:

 Material is based on Hands-On Machine

Learning with Scikit_Learn and TensorFlow:

Concepts, Tools and Techniques (by Aurelien

Geron), Wikipedia, and other sources.

Dr.Srinath.S

UNIT – 1 Introduction to ANN:

 Introduction to ANN: Biological to Artificial neuron, Training an MLP, training a

DNN with TensorFlow, Fine tuning NN Hyper Parameters Up and Running with

TensorFlow

Dr.Srinath.S

Quick look into ML

Dr.Srinath.S

MACHINE LEARNING

Dr.Srinath.S

Associate Professor, Department of CS&E

Sri Jayachamarajendra College of Engineering,

JSS Science and Technology University, Mysuru- 570006

Introduction

 Artificial Intelligence (AI)

 Machine Learning (ML)

 Deep Learning (DL)

 Data Science

Dr.Srinath.S

Artificial Intelligence

 Artificial intelligence is intelligence demonstrated by

machines, as opposed to natural intelligence

displayed by animals including humans.

Dr.Srinath.S

Machine Learning

 Machine Learning – Statistical Tool to explore the data.

Machine learning (ML) is a type of artificial intelligence
(AI) that allows software applications to become more
accurate at predicting outcomes without being explicitly
programmed to do so. Machine learning algorithms use
historical data as input to predict new output values.

If you are searching some item in amazon… next time…
without your request… your choice will be listed.

Dr.Srinath.S

https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence

Variants of Machine Learning:

 Supervised

 Unsupervised

 Semi supervised

 Reinforcement Learning

Dr.Srinath.S

Deep Learning

 It is the subset of ML, which mimic human brain.

 Three popular Deep Learning Techniques are:

 ANN – Artificial Neural Network

 CNN- Convolution Neural Network

 RNN- Recurrent Neural Network

Dr.Srinath.S

Summary:

Dr.Srinath.S

Introduction to ANN

Dr.Srinath.S

Biological Neural Network to ANN

Dr.Srinath.S

Biological Neural Network (BNN)

Dr.Srinath.S

BNN parts

 BNN is composed of a cell body and many branching
extensions called dendrites and one long extension
called the axon.

 Primarily the parts of BNN are:

 Cell body

 Dendrites – Input part

 Axon - output

 BNN is an interconnection of several biological
neurons.

 Interconnection between two neurons is as shown in
the next slide

Dr.Srinath.S

Two neurons interconnected

Dr.Srinath.S

 At the end AXON splits off into many branches
called telodendrion and the tip of these branches
are called synaptic terminals or simply synapses.

 The synapses of one neurons are connected to the
dendrites of other neurons.

 Electric impulses called signals are passed from one
neuron to another.

 BNN is a collection of billions of neurons, and each
neurons are typically connected to thousands of
other neurons.

Dr.Srinath.S

Another view of BNN interconnection

Dr.Srinath.S

Multiple layers in a biological network

Dr.Srinath.S

Artificial Neural Network (ANN)

Dr.Srinath.S

Logical Computations with Neurons

 The artificial neuron simply activates its output

when more than a certain number of its inputs are

active.

 Let us see some of the ANNs performing simple

logical computations.

Dr.Srinath.S

ANNs performing simple logical

computations

Dr.Srinath.S

 The first network on the left is simply the identity function: if neuron A is
activated, then neuron C gets activated as well (since it receives two input
signals from neuron A), but if neuron A is off, then neuron C is off as well.

 The second network performs a logical AND: neuron C is activated only
when both neurons A and B are activated (a single input signal is not
enough to activate neuron C).

 The third network performs a logical OR: neuron C gets activated if either
neuron A or neuron B is activated (or both).

 Finally the fourth network computes a slightly more complex logical
proposition: neuron C is activated only if neuron A is active and if neuron B
is off. If neuron A is active all the time, then you get a logical NOT: neuron C
is active when neuron B is off, and vice versa.

Dr.Srinath.S

Perceptron

 Perceptron is a single layer neural network or
simply a neuron.

 So perceptron is a ANN with single layer neural
network without having hidden layers.

Dr.Srinath.S

Perceptron consists of 4 parts

 input values

 weights and a Constant/Bias

 a weighted sum, and

 Step function / Activation function

Dr.Srinath.S

Linear threshold unit (LTU)

Dr.Srinath.S

 A perceptron can have multiple input and single

output as shown in the previous diagram (single

LTU).

 Perceptron is simply composed of a single layer of

LTUs.

 For example a 2 input and 3 output perceptron is

as shown in the next slide.

 However a single layer perceptron will not have

hidden layer.

Dr.Srinath.S

Dr.Srinath.S

Working of Perceptron

 The perceptron works on these simple steps:

 a. All the inputs x are multiplied with their
weights w. Let’s call it k.

 Add all the multiplied values and call
them Weighted Sum.

 Finally Apply that weighted sum to the
correct Activation Function.

For Example: Heaviside step function.

Dr.Srinath.S

https://medium.com/towards-data-science/activation-functions-neural-networks-1cbd9f8d91d6

Step activation function

Dr.Srinath.S

Comparison between BNN and ANN

Dr.Srinath.S

Equation for the perceptron learning rule

 Perceptrons are trained considering the error made

by the network.

 For every output neuron that produced a wrong

prediction, it reinforces the connection weights from

the inputs that would have contributed to the correct

prediction.

 Equation is given in the next slide

Dr.Srinath.S

 Perceptron learning rule (weight update)

 • wi, j is the connection weight between the ith input
neuron and the jth output neuron.

 • xi is the ith input value of the current training
instance.

 • ^yj is the output of the jth output neuron for the
current training instance.

 • yj is the target output of the jth output neuron for the
current training instance.

 • η is the learning rate.

 This process is repeated till the error rate is close to
zero Dr.Srinath.S

Perceptron Learning Rule

Dr.Srinath.S

 A perceptron is simply composed of a single layer
of LTUs, with each neuron connected to all the inputs.

 some of the limitations of Perceptrons can be
eliminated by stacking multiple Perceptrons.

 The resulting ANN is called a Multi-Layer Perceptron
(MLP).

 MLP will have one or more hidden layers.

Dr.Srinath.S

Multi Layer Perceptron (MLP)

Dr.Srinath.S

MLP : Simplified view

Dr.Srinath.S

Example for ANN

Dr.Srinath.S

Shallow or Deep ANN

 MLP can be either shallow or deep.

 They are called shallow when they have only one
hidden layer (i.e. one layer between input and
output).

 They are called deep when hidden layers are more
than one. (Two or more)

 This is where the expression DNN (Deep Neural
Network) comes.

 So DNN is a variant of ANN having 2 or more hidden
layer.

Dr.Srinath.S

Summary

 Perceptron: It is a ANN with single layer neural network
without having hidden layers. It will have only input and
output layer.

 MLP – ANN with 2 or more layers called MLP

 MLP with only one hidden layer is called shallow ANN

 MLP with two or more hidden layers is called deep ANN,
which is popularly known as Deep Neural Network.

 Perceptron, Shallow ANN, Deep ANN are all variants of
ANN.

Dr.Srinath.S

How many hidden layers?

 For any application, number of hidden layers and

number of nodes in each hidden layer is not fixed.

 It will be varied till the output moves towards zero

error or till we get a satisfactory output.

Dr.Srinath.S

Example: Neural Network to find whether the given input is

Square or circle or triangle

Dr.Srinath.S

Dr.Srinath.S

Dr.Srinath.S

Dr.Srinath.S

CNN

CNN (Convolutional Neural Network):

They are designed specifically for computer vision (they
are sometimes applied elsewhere though).

Their name come from convolutional layers.

They have been invented to receive and process pixel
data.

Dr.Srinath.S

RNN

RNN (Recurrent Neural Network):
They are the "time series version" of ANNs.
They are meant to process sequences of data.
They are at the basis of forecast models and language models.

The most common kind of recurrent layers are
called LSTM (Long Short Term Memory) and

GRU (Gated Recurrent Units): their cells contain small, in-scale
ANNs that choose how much past information they want to
let flow through the model. That's how they modeled
"memory". Dr.Srinath.S

Forward and Backward Propagation

 Forward Propagation is the way to move from the
Input layer (left) to the Output layer (right) in the
neural network. It is also called as Feed forward.

 The process of moving from the right to left i.e
backward from the Output to the Input layer is
called the Backward Propagation.

 Backward propagation is required to correct the
error or generally it is said to make the system to
learn.

Dr.Srinath.S

Feed forward and Backward propagation

Dr.Srinath.S

Backward propagation

 Measure the network’s output error (difference between

actual and obtained)

 Tweak the waits to correct or to reduce the error.

 Move from output layer to input layer one step at a time.

 Compute how much each neuron in the last hidden layer

contributed to each output neuron’s error.

 Later it moves to the next hidden layer in the reverse

direction till the input layer and keeps updating the waits.

 Tweaking the weights to reduce the error is called

gradient descent step
Dr.Srinath.S

Summary… and moving toward

activation functions

Dr.Srinath.S

Linear and Non-linear part of neuron

Dr.Srinath.S

Need of activation function:

 They are used in the hidden and output layers.

 Activation function is a function that is added

into an artificial neural network in order to help

the network learn complex patterns in the

data.

 The activation function will decide what is to be

fired to the next neuron

Dr.Srinath.S

Can ANN work without an activation function?

 Then it becomes linear.

 Basically, the cell body has two parts, one is linear and
another one is non-linear. Summation part will do linear
activity, and activation function will perform non-linear
activity.

 If activation function is not used then, every neuron will
only be performing a linear transformation on the inputs
using the weights and biases.

 Although linear transformations make the neural network
simpler, but this network would be less powerful and will
not be able to learn the complex patterns from the data.
Hence the need for activation function.

Dr.Srinath.S

Popular Activation Functions

1. Popular types of activation functions are:
1. Step function
2. Sign function
3. Linear function
4. ReLU (Rectified Linear Unit): no –ve value
5. Leaky ReLU
6. Tanh
7. Sigmoid
8. softmax

Dr.Srinath.S

1. Step Function

Dr.Srinath.S

2. Sign function

Dr.Srinath.S

3. Linear function

Dr.Srinath.S

4. ReLU function

Dr.Srinath.S

ReLU (Rectified Linear Unit)

 It will produce the same output for +ve value, and 0

for all –ve values.

Dr.Srinath.S

5. Leaky Rectified Linear Unit

Dr.Srinath.S

Leaky ReLU

 Leaky Rectified Linear Unit, or Leaky ReLU,

is a type of activation function based on a

ReLU, but it has a small slope for negative

values instead of a flat slope.

Dr.Srinath.S

6. Tanh: Hyperbolic Tangent :

any value between -1 to +1.

Dr.Srinath.S

7 Sigmoid Function

Dr.Srinath.S

Sigmoid: It is used for classification

Dr.Srinath.S

8. SoftMax function : It is the variant of

sigmoid function with multi class classification

Dr.Srinath.S

Logistic Regression

 Linear Regression is used to handle

regression problems whereas Logistic

regression is used to handle the

classification problems.

 Linear regression provides a continuous

output but Logistic regression provides

discreet output

Dr.Srinath.S

Compare linear vs Logistic regression

Dr.Srinath.S

Linear Regression

• Linear Regression is one of the most simple
Machine learning algorithm that comes under
Supervised Learning technique and used for
solving regression problems.

• It is used for predicting the continuous dependent
variable with the help of independent variables.

• The goal of the Linear regression is to find the best
fit line that can accurately predict the output for
the continuous dependent variable

Dr.Srinath.S

Logistic Regression

• Logistic regression is one of the most popular
Machine learning algorithm that comes under
Supervised Learning techniques.

• It can be used for Classification as well as for
Regression problems, but mainly used for
Classification problems.

• Logistic regression is used to predict the
categorical dependent variable with the help of
independent variables.

Dr.Srinath.S

Training an MLP with TensorFlow’s

 Training (60%)

 Validation (20%)

 Testing (20%)

Dr.Srinath.S

Tensorflow and Scikit-learn (SK learn)

 Scikit-learn (SK Learn) is a general-purpose
machine learning library is better for traditional
Machine Learning,

 While TensorFlow (tf) is positioned as a
deep learning library is better for Deep Learning.

 The obvious and main difference is that
TensorFlow does not provide the methods for a
powerful feature engineering as sklearn such as
dimensional compression, feature selection, etc.

Dr.Srinath.S

https://intellipaat.com/blog/tutorial/machine-learning-tutorial/introduction-deep-learning/

How to work with DL algorithms?

 You need a programming language, preferred is

Python.

 Lot of libraries available including Tensorflow.

 Others are Keras, Theano, torch, DL4J

 Tensorflow is from google and Keras is now

embedded into Tensorflow.

 Tensorflow also supports traditional ML algorithms

also.

Dr.Srinath.S

What is Tensor Flow?

Dr.Srinath.S

What is Tensorflow?

 It is from google

 It was originally developed for large numerical

computations.

 Later it was introduced with ML and DL algorithms

 It accepts data in multidimensional array called

“Tensor”

Dr.Srinath.S

Tensorflow works on the basis of

Dataflow graphs

Dr.Srinath.S

In tensor flow graphs are created and

are executed by creating sessions

Dr.Srinath.S

 All the external data at fed into what is know as

placeholder, constants and variables.

 To summarize, Tensorflow starts building a

computational graph and in the next step it

executing the computational graph.

Dr.Srinath.S

Tensors

Dr.Srinath.S

Ranks (dimensions) of tensor

Dr.Srinath.S

Why to use TensorFlow?

Dr.Srinath.S

Components of Tensorflow: Constants

 Programming using Tensorflow is bit different from

programming on SK Learn and also on python.

 In Tensorflow the storage consists of

 Constants

 Variables

 Placeholders

Dr.Srinath.S

Variables

 In variables, V must be in capital letters.

 Value of the variable can be changed.. But not of

constant.

Dr.Srinath.S

Placeholder

 They are used to feed the data from outside.

 Say from a file, from image file, CSV file and so on.

 Feed_dict id popularly used to feed the data to the

placeholder.

Dr.Srinath.S

 Constants, Variable and placeholder…

 Crate Graph using the above, then you will have

session and session object and run it.

 Every computation you perform is a node in a

graph.

 Initially tf object is created, which is the default

graph, which will not have any constant, variable …

Dr.Srinath.S

Running a session in Tensorflow

 Multiplication of ‘a’ and ‘b’ are done while running

the session (last statement)

Dr.Srinath.S

Tensor flow – where to execute?

 TensorFlow is already pre-installed

 When you create a new notebook on

colab.research.google.com, TensorFlow is

already pre-installed and optimized for the

hardware being used. Just import tensorflow

as tf , and start coding.

Dr.Srinath.S

Tensor flow can also be executed in

Jupyter Notebook

 Inside the notebook, you can import

TensorFlow in Jupyter Notebook with the tf

alias. Click to run.

Dr.Srinath.S

Training an MLP with TensorFlow’s

 The simplest way to train an MLP with TensorFlow is
to use the high-level API TF.Learn.

 The DNNClassifier class makes it trivial to train a
deep neural network with any number of hidden
layers, and a softmax output layer to output
estimated class probabilities.

 For example, the following code trains a DNN for
classification with two hidden layers (one with 300
neurons, and the other with 100 neurons) and a
softmax output layer with 10 neurons.

Dr.Srinath.S

Piece of code of for training MLP

 fdsfdf

tf is tensorflow

Code creates set of real valued columns from the training set.
Then create the DNNClassifier, with two hidden layers of 300 and 100 neurons
and with output layer of 10 neurons.
Finally program is run for 40,000 epochs in a batch of 50.

Dr.Srinath.S

Fine tuning NN Hyper Parameters -

Up and Running with TensorFlow

 In a simple MLP you can change the number of

layers, number of neurons per layer, the type of

activation function and also the weight initialization

logic.

 The above are the Hyper Parameters to be fine

tuned in a Neural Network.

Dr.Srinath.S

Number of Hidden Layers

 For many problems, you can just begin with a single hidden
layer and you will get reasonable results.

 It has actually been shown that an MLP with just one hidden
layer can model even the most complex functions provided
it has enough neurons.

 For a long time, these facts convinced researchers that
there was no need to investigate any deeper neural
networks.

 But they overlooked the fact that deep networks have a
much higher parameter efficiency than shallow ones.

 They can model complex functions using exponentially
fewer neurons than shallow nets, making them much faster
to train

Dr.Srinath.S

Number of hidden layers..cont

 Very complex tasks, such as large image
classification or speech recognition, typically
require networks with dozens of layers (or even
hundreds) and they need a huge amount of training
data.

 However, you will rarely have to train such networks
from scratch: it is much more common to reuse parts
of a pretrained state-of-the-art network that
performs a similar task. Training will be a lot faster
and require much less data

Dr.Srinath.S

Number of Neurons per Hidden Layers

 Usually the number of neurons in the input and output layers
is determined by the type of input and output your task
required.

 For the hidden layer the common practice is to size them to
form a funnel, with fewer and fewer neurons at each layer.

 For example a typical neural network may have two hidden
layers, the first with 300 neurons and the second with 100.

 However, this practice is not as common now, and you may
simply use the same size for all hidden layers; for example
all hidden layers with 150 neurons.

 Neurons can be gradually increased until the network starts
overfitting.

Dr.Srinath.S

Activation Functions

 In most of the cases you can use the ReLU activation

function in the hidden layers. It is a bit faster to

compute than other activation functions.

 For the output layer, the softmax activation function

is generally a good choice for classification tasks.

Dr.Srinath.S

End of Unit - 1

Dr.Srinath.S

UNIT - 2

Deep Neural Network

Unit – 2 : Syllabus

• Deep Neural network:

• Introduction,

• Vanishing Gradient problems,

• Reusing Pretrained layers,

• Faster optimizers,

• avoiding over fitting through regularization

Deep Neural Networks

• Introduction:

• Neural network with 2 or more hidden layers, can be called Deep
Neural Network.

• While handling a complex problem such as detecting hundreds of
types of objects in high resolution images, you may need to train a
much deeper DNN, perhaps say 10 layers, each containing hundreds
of neurons, connected by hundreds of thousands of connections.

• This leads to a problem of vanishing gradients.

Training the Neural Network

Back propagation
• Backpropagation is the essence of neural network training. It is the

method of fine-tuning the weights of a neural network based on the
error rate obtained in the previous epoch (i.e., iteration).

• Proper tuning of the weights allows you to reduce error rates and make
the model reliable by increasing its generalization.

• Backpropagation in neural network is a short form for “backward
propagation of errors.” It is a standard method of training artificial
neural networks. This method helps calculate the gradient of a loss
function with respect to all the weights in the network.

Back propagation is the method of adjusting
weights after computing the loss value.

Chain rule in backpropagation

Backpropagate to change the weight

Similarly :

Problem: (to compute Y out): apply activation
function
• Calculate the output ‘y’ of a 3 input neuron with bias, with data as

given in the diagram. Use sigmoidal activation function

Gradient Descent

Compute the weights

Vanishing Gradient

• Back propagation algorithm works by going from the output layer to
the input layer, propagating the error gradient on the way.

• Gradients often get smaller and smaller as the algorithm progresses
down to the lower layers.

• As a result the gradient descent updates in the lower layer weights
virtually unchanged.

• This makes training never converges to a good solution.

• This is called vanishing gradient.

Exploding Gradients

• Some times the gradients can grow bigger and bigger, so many layers
gets large weight updates and the algorithm diverges.

• This is called exploding Gradients, which is popularly seen in recurrent
neural networks.

Gradient clipping

• A popular technique to lessen the exploding gradients problem is to
simply clip the gradients during backpropagation so that they never
exceed some threshold (this is mostly useful for recurrent neural
networks)

Reusing Pretrained Layers

• Saved models with its weights after training

• They are usually a very deep Neural Network models

• Trained on very large and generalized dataset used on large
classification tasks.

Reusing Pretrained Layers

• It is generally not a good idea to train a very large DNN from scratch:.

• instead you should always try to find an existing neural network that
accomplishes a similar task to the one you are trying to tackle, .

• then just reuse the lower layers of this network this is called Transfer
Learning.

• It will not only speed up training considerably, but will also require
much less training data.

Reusing Pretrained Layers
• For example, suppose that you have access to a DNN that was trained

to classify pictures into 100 different categories, including animals,
plants, vehicles, and everyday objects.

• You now want to train a DNN to classify specific types of vehicles.
These tasks are very similar, so you should try to reuse parts of the
first network

Observations to be made While training the
lower layers.
• If the input pictures of your new task don’t have the same size as the

ones used in the original task, you will have to add a preprocessing
step to resize them to the size expected by the original model. More
generally, transfer learning will work only well if the inputs have
similar low-level features.

Pre-trained Models – How it is useful?

• Lower layers learn basic features from very large and generalized training images like color, lines
in various angles

• These lower layer features are almost same for our most of our task, changes will be made in the
upper layers, Hence training will be made for the upper layers.

• Examples of Pre-trained models:

• Xception

• VGG16

• VGG19

• ResNet50

• InceptionV3

• InceptionResNetV2

• MobileNet

• MobileNetV2

• DenseNet

• NASNet

https://keras.rstudio.com/reference/application_xception.html
https://keras.rstudio.com/reference/application_vgg.html
https://keras.rstudio.com/reference/application_vgg.html
https://keras.rstudio.com/reference/application_resnet50.html
https://keras.rstudio.com/reference/application_inception_v3.html
https://keras.rstudio.com/reference/application_inception_resnet_v2.html
https://keras.rstudio.com/reference/application_mobilenet.html
https://keras.rstudio.com/reference/application_mobilenet_v2.html
https://keras.rstudio.com/reference/application_densenet.html
https://keras.rstudio.com/reference/application_nasnet.html

VGG 16 Layers.

•

Freezing the lower layers

• It is likely that the lower layer of the first DNN have learned to detect
low –level features in pictures that will be useful across both image
classification tasks, so you can just reuse these layers as they are.

• It is generally good idea to “Freeze” their weights.

• If the lower layers weights are fixed, then the higher layers weights
will be easier to train.

Tweaking, Dropping or replacing the upper
layers
• The output layers of the original model should usually be replaced

since it is most likely not useful at all for the new task and it may not
even have the right number of outputs for the new task.

• If performance is not good you may drop or replace the upper layer
for god performance.

Normalization

• In some cases, feature will have varied values, which may lead to
inconsistent results.

• For example, observe the following table: where wine quality is being
verified.

• However the values of “Alcohol” and “Malic” are having huge
difference.

• In such cases, the system may fail to perform properly.

• Hence normalizing all the feature between 0 to 1 is required.

• Min-max normalization is popularly used, observe the values of alcohol and
malic are now normalized between 0 to 1.

• This will be done as soon as the input is fed into the system, and before
summation and activation function. It is also called pre-processing in neural
network.

• In the example given below: age and number of mile of driving are
two parameters.

• They are on different scaling.

• If they are used as it is without normalization, may lead to imbalance
of neural network.

• To handle this we need to normalize the data.

• Right hand side you have the same data which is now normalized.

Batch size and epoch

• The weights are update after one iteration of every batch of data.

• For example, if you have 1000 samples and you set a batch size of 200, then the neural
network’s weights gets updated after every 200 samples.

• Batch is also called as ‘Mini Batch’.

• An epoch completes after it has seen the full data set, so in the example above, in 1
epoch, the neural network gets updated 5 times.

• Batch size will be fixed based on the processing capacity.

• In the above example weights will not be updated till your training set receives 200
samples.

Batch size = 10

Faster Optimizers

• Training a very large deep neural network can be slow.

• Four ways to speed up training :
• Applying good initialization strategy for the connection weights.
• Using a good activation function
• Using Batch Normalization and
• Reusing parts of a pretrained network

• Another huge speed boost comes from using a faster optimizer than
the gradient descent optimizer.

• Some of the popular fast optimizers are: Momentum Optimization,
Nesterov Accelerated Gradient, AdaGrad, RMSProp and Adam
Optimization

Reason to use fast optimizer?

• Let us consider the following case:

Gradient Descent updating…

• When we pass one sample, loss is given by:

• And gradient descent is, updating the weights with reference to loss.

Iteration and Epoch

• Forward propagate and later update the weights in the backward
propagation for one sample is called ITERATION.

• If the iteration is completed for all the training samples available it is
called ONE EPOCH.

• Say for example if we have 10,000 training samples are available, then
if we decide to update weights for every sample, we will be having
10,000 iterations and this is called one EPOCH.

General Gradient Descent
and
Stochastic Gradient Descent (SGD)
• In general Gradient Descent, loss will be collected for all the training samples

and weights will be updated by taking average of all the loss.

• Say if we have 10,000 samples to be trained, then we will not be having 10,000
iterations. Will be collecting the loss of all the 10,000 samples. This completes
one epoch and at the end of one epoch weights will be updated.

• The problem in the above method is, if the training data is too huge like 10 Lakhs
or 50 Lakhs.. Then we need have huge RAM space to load all the samples and
space is also required to hold the loss value for all the samples. As a solution
researchers found another method called stochastic Gradient Descent.

• In Stochastic Gradient Descent (SGD), weights will be updated in every iteration
and weights will be updated in every iteration. Though it requires less memory, it
is time consuming to reach the global minima of error.

Solution to SGD is the ‘Mini Batch’

• Researchers have introduced a technique called “Min Batch” or “Mini Batch
SGD”

• In mini batch, a batch of training data is considered for weight updates.
This is the iteration value.

• For example, if we have 10,000 training samples, and if batch size is 1000,
weights will be updated after every 1000 samples are trained.

• In this case to complete one epoch, we need to have 10 iterations.

• On the other hand in one epoch, there will be weight updation for 10
times, but this might have some noise as shown in the diagram.

Counter Plot
• If you draw a counter plot, which is the top view of the gradient

descent, it will be smoother for GD (Red color), and for Minibatch
SGD it will not be smooth (Black color) and blue colour is the SG..
Which will have more error. The left hand side picture is an illustration
of counter plot using python.

Illustration of noise, while climbing the hill, SGD or
Mini SGD will have noise, which can be smoothened
using some technique called Optimizers.

Fast Optimizer – Momentum Optimizer

• Consider the physics solution to smoothen the velocity:

• If beta is 0.95 and for the next step it will become 0.05, and hence the
velocity of moment will be smoothened.

• Similarly weights will be updated in the momentum optimization:

• The below computation shows the weight calculation for a single
weight. It can also be applied for bias. Wt-1 is the Wold.

• Vdw is the exponential weight change.

Final concept of GD with Momentum for fast
and smooth optimization

Summary of GD, SGD and Mini Batch SGD

• GD – Weight updation will be done after all samples are passed
through the model

• SGD – weight updation takes place for every sample

• Mini Batch – Weight updation takes place for every batch.

• Batch size should not be too small or too big. Depending on the
available sample size, program should decide about the batch size.

AdaGrad Faster Optimizer

• AdaGrad – Adaptive Gradient.

• In Adagrad Optimizer the core idea is that each weight has a different
learning rate (η).

• This modification has great importance.

• In the real-world dataset, some features are sparse (for example, in
Bag of Words most of the features are zero so it’s sparse) and some
are dense (most of the features will be noon-zero).

• So keeping the same value of learning rate for all the weights is not
good for optimization. The weight updating formula for adagrad looks
like:

• Weight updation in Ada Grad is given by:

• Where alpha(t) denotes different learning rates for each weight at
each iteration.

• Here, η is a constant number, epsilon is a small positive value number
to avoid divide by zero error if in case alpha(t) becomes 0 because if
alpha(t) become zero then the learning rate will become zero which in
turn after multiplying by derivative will make w(old) = w(new), and
this will lead to small convergence.

• Advantages of Adagrad:
• No manual tuning of the learning rate required.

• Faster convergence

• More reliable

Avoiding Overfitting Through Regularization

• Deep Neural Network typically have tens of thousands of parameters.

• With so many parameters, the network is prone to overfitting the
training set.

• This will be done using “Regularization” techniques.

• Some of the popular regularization techniques are:
• Early Stopping
• Dropout
• Max-Norm Regularization and
• Data Augmentation.

Early Stopping

• To avoid Overfitting the training set, good solution is early stopping.

• Interrupt training when its performance on the validation set starts dropping.

• Evaluate the model on a validation set at regular intervals.

• If the performance is improved compared to the previous interval, go back to
the pervious values and stop training.

Dropout

• Another popular regularization technique for deep neural network is
arguably dropout.

• At every training step, every neuron has a probability P of being
temporarily “Dropped Out”, meaning it will be entirely ignored during
this training step.

• But it may be active during the next step.

• The hyperparameter ‘P’ is called the dropout rate and it is typically
set to 50%.

• After training neurons don’t get dropped anymore.

• It is found that many a times this technique has worked well.

Max-Norm Regularization

• Another regularization technique that is quite popular for neural
networks s called max-norm regularization..

• It constrains the weights w of the incoming connections such that**
∥ w ∥2 ≤ r, where r is the max-norm hyperparameter and ∥ · ∥2 is the
ℓ2 norm**.

• It is typically implemented by computing ∥w∥2 after each training
step and clipping w if needed.

• Reducing r increases the amount of regularization and helps reduce
overfitting.

Data Augmentation

• One last regularization technique is data augmentation.

• It consists of generating new training instances from existing ones.

• Artificially boosting the size of the training set.

• This will reduce overfitting making this a regularization technique.

• The trick is to generate realistic training instances, ideally a human
should not be able to tell which instances were generated and which
ones were not.

End of Unit - 2

Distributing Tensor flow across
devices and servers

Unit - 3

Syllabus : Unit 3

Multiple devices on a single machine
multiple servers
parallelizing NN on a Tensor Flow cluster
Convolution Neural Network:
Architecture of the visual cortex
Convolutional layer
Pooling layer
CNN architecture

Multiple Devices on a single machine

• Tensorflow provides facility to execute multiple tasks across multiple
devices present in the same machine.

• Multiple devices can be multiple GPUs’ and CPUs’

• You can do this by adding multiple GPU cards to a single machine.

• Major performance boost is obtained by adding single machine.

• Nvidia’s Compute Unified Device Architecture Library (CUDA) allows
developers to use CUDA enabled GPUs for all sorts of computations.

• Nvidia’s CUDA Deep Neural Network Library (cuDNN) is a GPU
accelerated library of accelerated library of primitive for DNN.

• It provides optimized implementations of common DNN
commutations such as activation layers, normalization, forward and
backward convolutions and pooling .

• Block diagram of multiple device on single machine for ANN
execution is shown in the next slide.

Block diagram to show the use of multiple
devices on a single machine.

Multiple devices across multiple servers

• To run a graph across multiple servers, you first need to define a
cluster.

• A, cluster is composed of one or more Tensorflow servers, called
tasks, which are typically spread across several machines as shown in
the picture presented in the previous slide.

• Each task belongs to a job.

• A job is just a named group of tasks that typically have a common role
such as “ps” or “worker” in the diagram shown.

Parallelizing Neural Networks

• Initially use the code for a single device and specify the master
server’s address when creating the session.

• Now the program will be running on the server’s default device.

• Later, by running several client sessions in parallel in different threads
or different process, connecting them to different servers and
configuring them to use different devices you can quite easily train or
run many neural networks in parallel across all devices and all
machines in your cluster.

Convolution Neural Networks

• Convolutional neural networks (CNN) emerged from the study of
brain’s visual cortex and they have been used in image recognition
since the 1980’s.

• In the last few years due to increase in computational power, the
amount of available training data, CNN have managed to achieve
superhuman performance on some complex visual trasks.

• CNN’s are now not just restricted to visual perception, they are also
successful at other tasks such as voice recognition or natural language
processing (NLP)

Why CNN for image recognition?

• A regular Deep Neural Network with fully connected layers for image
recognition task is fine if it is a small image.

• It breaks downs for larger images because of the huge number of
parameters it requires, for example a 100x100 image has 10,000
pixels.

• If we have 1000 neurons in the first layer, then will be having 10
million (1 crore) connections.

• This is just he first layer…and think of subsequent layers.

• CNN solves this problems using partially connected layers.

The Architecture of the Visual Cortex

Visual Cortex Architecture

• Whenever your input is in the form of images and even frames of the video
CNN is highly preferred.

• It is very efficient in recognizing the face, object recognition and so on.

• Cerebral Cortex is in the back part of our brain.

• Inside the cerebral cortex visual cortex is present, which is responsible for
creating the impression of vision.

• Eye ball are only responsible for passing the picture data of the image.

Visual Cortex

• Visual Cortex has multiple layers like V1, V2,…V6

• They play very important role in recognition of object.

• For example, If we are trying to recognize the animal CAT, V1 layer
identifies the borders.

• It next passes data to the next layer, say layer V2 and so on.. It tries to
identify any other object associated with the primary object… and so on…

• Similarly each layer does a specific task. Some times data is passed from V1
to V4 and or any other layer directly instead of passing sequentially.

• After data passed through several layers, final picture is created in our
brain.

• Similar to visual cortex, different filters in the CNN does different tasks.

Convolution Layer
• The most important building block of CNN is the convolution layer.

• All multilayer neural networks we looked at had layers composed of a long
line of neurons, and we had to flatten input images to 1D before feeding
them to the neural network.

• In CNN each layer is represented in 2D, which makes it easier to match
neurons with their corresponding inputs.

• Neurons in the first convolution layer are not connected to every single
pixel in the input image, but only to pixels in their receptive fields.

• In turn, each neuron in the second convolution layer, connected only to
neurons located within a small rectangle in the first hidden layer. (shown in
the picture in the next slide)

CNN Layers

Connection between layers and zero padding

• Filter is passed through the input or any other subsequent layer will
generate the next level convolution layer.

• The figure shown below is a 3x3 filter.

Connection between layers and zero padding

• A neuron located in row i, column j of a given layer is connected to the outputs
of the neurons in the previous layer located in

rows i to (i + fh – 1), and columns j to (j + fw – 1)

• Where fh and fw are the height and width of the receptive field (see Figure 13-
3 in the previous slide) or we can say filter width and filter height.

• In order for a layer to have the same height and width as the previous layer, it
is common to add zeros around the inputs, as shown in the diagram. This is
called zero padding. (Explained in detailed in later part)

Reducing dimensionality using stride
• Stride is the number of pixels shifts over the input matrix.

• When the stride is 1 then we move the filters to 1 pixel at a time.

• When the stride is 2 then we move the filters to 2 pixels at a time and so on.

• As the stride value increases the dimension

of the next convolution layer decreases.

• The figure shows

convolution would work with a stride of 2.

Stride can have different size on x and y direction.

Stride movement

Filters
• In CNN neuron’s weights can be represented as a small image called filters.

• Different filters are used for different purpose. Say for example Vertical filter
for identifying the vertical lines and horizontal filter for highlighting the
horizontal lines and so on.

Filters continued…
• Filters are popularly called as convolution kernels.

• This slide illustrates the use of vertical filters.

Other popular filters

• It is required to create our own filter to identify different objects in a image.

• Further the values in the filter will be updated during back propagation of CNN.

Applications of different filters

Loopy filter applied

Loopy filter

Activation function on the feature mapped image

• ReLU activation function is popularly used after feature mapping.

• All –ve values are replaced by zero and the remaining values will be
retained as it is.

Application of filter to identify different patterns

• Example shown below is the application of filter to identify the
presence of loop in different numbers:

Application of different filters on the same input image:

• Application of multiple filters like loopy, vertical and diagonal line filter on
the feature map is shown in the figure below.

Stacking of filters:
Filters are applied and are stacked as shown below

Formula for computing the matrix size of the
output image or convolution layer.
• Formula for computing the output, given nxn input image is

• The main drawbacks are:
1.Every time we apply a convolutional operation, the size of the image shrinks
2.Pixels present in the corner of the image are used only a few number of times

during convolution as compared to the central pixels. Hence, we do not focus
too much on the corners since that can lead to information loss

•

• Solution for the above problem is to use padding

Padding

• Padding is adding extra columns and rows on either sides with value zero.

• Padding makes the output size same as the input size, i.e.,
n+2p-f+1 = n

• How many rows and columns should be padded depends on the size of the filter.

• If filter is of size 3x3 then 1 row and both on top and bottom will be added and also one
column to the left and right will be added.
So, p = (f-1)/2

• Adding padding to an image processed by a CNN allows for more accurate
analysis of images.

Original image – Padding – After applying filter

• Original image is of size 4x4 and the image generated after filter is
also of size 4x4.

Another example for padding

Another example: Applying different filters to the image
Filters applied on an image to detect the head part of Koala

CNN applied on image to detect the presence of animal Koala

Even if the animal position changes the feature maps will
identify different parts of animal Koala.

(Observe the change in feature map position comparing it with the previous slide)

Complete CNN architecture, which does Feature extraction and
classification using fully connected Neural network at the end.

Pooling Layer

• Pooling layers are used to reduce the dimension.

• 3 Popular pooling methods are
• Max pooling (Very popularly used)

• Min Pooling

• Average Pooling

Max Pooling

Max, Min and Average Pooling

Max Pooling
Min Pooling

Average Pooling

Location invariant loop detection :
Use of filter, activation function and max pooling

CNN Architecture

• A typical CNN Architecture is as shown in the figure below

CNN architecture Explained
• A typical CNN architecture stack a few convolution layers each followed by ReLU layer.

• Then a pooling layer.

• Then another few convolutional layers , then another pooling layer, and so on.

• The image gets smaller and smaller as it progresses through the network, but it also
typically gets deeper and deeper.

• At the top of the stack, a regular feedforward neural network is added composed of a
few fully connected layers(+ ReLU), and the final layer outputs the prediction.

• Over the years, variants of this fundamental architecture have been developed ,
leading to amazing advances in the field.

Example for CNN Architecture.

End of Unit 3

UNIT – 4
Recurrent Neural Network

Recurrent Neural Network:

• Recurrent neurons,

• Basic RNN in Tensor Flow,

• Training RNN,

• Deep RNNs,

• LSTM Cell,

• GRU Cell,

• NLP

What is RNN?

• RNN – Recurrent Neural Network.

• CNN can be used mainly for Image and also to some extent video.

• RNN is popularly used in NLP and other domains.

• When we type a sentence,

It automatically completes.

Google has RNN in it.

Application of RNN… auto completion.

Application of RNN : Translation

Application of RNN : Named Entity Recognition

Sentimental Analysis

Summary of few applications

Why can’t an ordinary ANN is not enough?

Ordinary ANN
• For an application like NLP, ordinary ANN may not be sufficient.

• The reason is ANN works on fixed number of inputs and outputs or classes.

• For applications like NLP, to work with fixed number of neurons is difficult.
(refer picture in previous slide)

• On the other hand ..we can start with huge number neurons, If I am working
with only few words… rest of the neurons will be having null values or zero
values.

• But this is waste of computation time.

Some of the applications of RNN
• RNN is good for sequences of data

• Like NLP… say a sentence is positive or negative

• Time series

• Stock market prediction

• SPAM classifier.

• Machine Translation

• Video Tagging

• Text Summarization

• Call Centre Analysis

• Music composition…..

Too much of computation

Recurrent Neuron

A layer of recurrent neuron

A layer of RNN with example

• Consider X1 as sentence with 4 words..x11,x12,x13,x14 … RNN in this
example is to find out whether it is positive feedback or not.

Computation of intermediate outputs

Basic RNNs in TensorFlow

• The static_rnn() function creates an unrolled RNN network by
chaining cells.

• Code for Basic RNN usage is as given below.

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

Training RNN

• To train an RNN, use regular Backpropagation. This strategy is called
backpropagation through time (BPTT).

• Consider the example discussed earlier.

(Presented in next slide also)

Training RNN

• Now weights are to be updated. Chain rule to update a wait is shown
below. Similar changes are to be made for other waits.

• However during gradient descend, again problems like vanishing gradient
and exploding gradient problem exists.

• To handle this, in RNN LSTM (Long short term memory) is used.

Deep RNN

• It is quite common to stack multiple layers of cells.

• This gives you a deep RNN.

LSTM
• Let us compare the architecture of regular RNN and LSTM

LSTM will have…

•Memory cell

• Forget Gate

• Input Gate

•Output Gate

Memory Cell

• Consider the statement:

• “I am Srinath. I am 48 years old”…… Here Noun is Srinath… The RNN
system memory cell should remember Noun as Srianth

• If the next statement “ My brother is Raveesh”.

• Now the context is changed… now the system should forget the old
data and remember the new data. This activity is Forget gate.

Unit - 5
Auto Encoders

Syllabus
• Autoencoders:

• Efficient data representation,

• stacked autoencoders,

• Unsupervised pretraining using SA,

• Denoising, Sparse autoencoders,

• variational and other autoencoders.

• Reinforcement Learning:

• Learning to optimize rewards,

• policy search,

• Neural network polices,

• Evaluating actions,

• Policy gradients,

• Markov decision processes,

• TDL and Q-learning

What is Autoencoders?

• Autoencoders are artificial neural networks capable of learning efficient
representations of the input data, called coding's, without any supervision (i.e.,
the training set is unlabeled).

• These coding's typically have a much lower dimensionality than the input data,
making autoencoders useful for dimensionality reduction.

• More importantly, autoencoders act as powerful feature detectors, and they can
be used for unsupervised pretraining of deep neural networks.

• Lastly, they are capable of randomly generating new data that looks very similar
to the training data; this is called a generative model. For example, you could
train an autoencoder on pictures of faces, and it would then be able to generate
new faces

Efficient Data Representations

• An autoencoder is always composed of two parts:

An encoder (or recognition network) that converts the inputs to an
internal representation,

followed by a decoder (or generative network) that converts the
internal representation to the outputs.

• An autoencoder typically has the same architecture as a Multi-Layer
Perceptron except that the number of neurons in the output layer
must be equal to the number of inputs.

• In this example, there is just one hidden Autoencoders layer composed
of two neurons (the encoder), and one output layer composed of three
neurons (the decoder).

• The outputs are often called the reconstructions since the autoencoder
tries to reconstruct the inputs.

How autoencoder works?

• Compression is to convert the input data into lower dimension, and
later using the lower dimension data it can be reconstructed which
will be close to original data.

• Autoencoders are more accurate compared to PCA

How autoencoder works?

• Autoencoder are popularly used for dimensionality reduction and
noise elimination.

• Autoencoders are simple network, which converts input into output
with minimal possible errors.

• It is unsupervised ML algorithm that applied back propagation, which
sets target value similar to input.

Components of Autoencoders

• Three components of Autoencoders are:

• 1. Encoder

• 2. Code

• 3. Decoder.

Components

• Encoder layer compresses the input into a different representation,
which is of reduced dimension.

• The next component is the code which is the compressed data, which
is called latent space data.

• Decoder, decodes the code and reconstructs the original data.

Properties of Autoencoders

• Autoencoders are basically used for compression.

• They are unsupervised as they don’t require explicit labels to train

• Autoencoders are lossy, which means that the decompressed data
will be degraded when compared to original data.

Training the autoencoders

• 4 parameters are required while training the auto encoders.
• Code Size : Data in the middle of the auto encoder after compression.

• Number of layers : Number of neural layers used

• Number of nodes per layer : Number of neurons per layer

• Loss function : It can be mean squared error or binary entropy

Architecture of Autoencoders

Encoder

• The layers between input and output of autoencoders are of lesser
dimension.

• Input if it is of 28x28 image= 784 pixels, let us say it as X.

• Its output is Z which is much smaller compared to X

Convolution Autoencoders:
uses convolution operator to learn to encode the input in

a set of simple singles and then try to reconstruct the
input in a set of simple signals and then try to reconstruct

the input from them

Uses of Convolution autoencoders

• 1. Image reconstruction

• 2. Image Colorization

• 3. Advanced application like

generating high resolution image

Stacked Autoencoders

• Just like other neural networks we have discussed, autoencoders can
have multiple hidden layers.

• In this case they are called stacked autoencoders (or deep
autoencoders).

• Adding more layers helps the autoencoder learn more complex
coding’s.

Unsupervised Pretraining using Stacked Autoencoders

• Tackling a complex supervised task when do not have a lot of labeled
training data, one solution is to find a neural network that performs a
similar task, and then reuse its lower layers.

• This makes it possible to train a high-performance model using only
little training data because your neural network won’t have to learn all
the low-level features; it will just reuse the feature detectors learned by
the existing net.

unsupervised Pretraining Using Stacked
Autoencoders
• Similarly, if you have a large dataset but most of it is unlabeled, you

can first train a stacked autoencoder using all the data, then reuse the
lower layers to create a neural network for your actual task, and train
it using the labeled data.

Unsupervised pretraining using autoencoders

Denoising Autoencoders
• Another way to force the autoencoder to learn useful features is to add

noise to its inputs, training it to recover the original, noise-free inputs.
This prevents the autoencoder from trivially copying its inputs to its
outputs, so it ends up having to find patterns in the data.

Variational Autoencoders

• Another important category of autoencoders variational
autoencoders.

• They are probabilistic autoencoders, meaning that their outputs are
partly determined by chance, even after training

• Most importantly, they are generative autoencoders, meaning that
they can generate new instances that look like they were sampled
from the training set.

Reinforcement Learning

• What is reinforcement Learning?

• Reinforcement learning is a machine learning training method based
on rewarding desired behaviors and/or punishing undesired ones.

• In general, a reinforcement learning agent is able to perceive and interpret
its environment, take actions and learn through trial and error.

• Reinforcement Learning (RL) is the science of decision making. It is
about learning the optimal behavior in an environment to obtain maximum
reward.

Reinforcement Learning Architecture

Some of the important terms used

• Agent: It is an assumed entity which performs actions in an
environment to gain some reward.

• Environment (e): A scenario that an agent has to face.

• Reward (R): An immediate return given to an agent when he or she
performs specific action or task. (can be award or punishment)

• State (s): State refers to the current situation returned by the
environment.

Example:

• The agent can be the program controlling a walking robot.

• In this case, the environment is the real world, the agent observes the
environment through a set of sensors such as cameras and touch
sensors.

• Its actions consist of sending signals to activate motors.

• It may be programmed to get positive rewards whenever it approaches
the target destination, and negative rewards whenever it wastes time,
goes in the wrong direction, or falls down.

Policy Search
• The algorithm used by the software agent to determine its actions is

called its policy.

• For example, the policy could be a neural network taking observations
as inputs and outputting the action to take (see Figure 16-2).

Neural Network Policy

• Neural network will take an observation as input, and it will output the
action to be executed.

• More precisely, it will estimate a probability for each action, and then we
will select an action randomly according to the estimated probabilities.

Neural Network Policy

Evaluating Actions:
• If we knew what the best action was at each step, we could train the neural network

as usual, by minimizing the cross entropy between the estimated probability and the
target probability.

• It would just be regular supervised learning.

• However, in Reinforcement Learning the only guidance the agent gets is through
rewards, and rewards are typically sparse and delayed.

• To tackle this problem, a common strategy is to evaluate an action based on the sum
of all the rewards that come after it, usually applying a discount rate r at each step.

• if an agent decides to go right three times in a row and gets +10 reward after the first
step, 0 after the second step, and finally –50 after the third step, then assuming we
use a discount rate r = 0.8, the first action will have a total score of 10 + r × 0 + r 2 × (–
50) = –22.

Policy Gradients (PG)
• PG algorithms optimize the parameters of a policy by following the grad

• First, let the neural network policy play the game several times and at each step compute the
gradients that would make the chosen action even more likely, but don’t apply these
gradients yet.

• Once you have run several episodes, compute each action’s score.

• If an action’s score is positive, it means that the action was good and you want to apply the
gradients computed earlier to make the action even more likely to be chosen in the future.

• However, if the score is negative, it means the action was bad and you want to apply the
opposite gradients to make this action slightly less likely in the future. The solution is simply
to multiply each gradient vector by the corresponding action’s score.

• Finally, compute the mean of all the resulting gradient vectors, and use it to per‐ form a
Gradient Descent step

Markov Decision Process (MDP)

• If the information provided by the state is sufficient to determine the
future states of the environment given any action, then the state is
deemed to have the Markov property (or in some literature, the state
is deemed as Markovian).

• This comes from the fact that the environments we deal with while
doing Reinforcement Learning are modeled as Markov Decision
Processes.

Markovian Decision Process continued..

• Reinforcement Learning has:
• Agent

• Actions

• Environment

• Rewards

• Consider the following to explain MDP

MDP
• Consider the state of the climate can be Sunny or Cloudy.

• The state change is shown in the diagram above

• The state space has only two states ..Ref (1)

• Markov assumption finally says that the current state depends only
on the previous state, not on any other state earlier to it.

• In Reinforcement Learning, state change decision

• Depends only on the previous state not on any other earlier state.

TDL

• TDL – Temporal Difference Learning

• Temporal difference (TD) learning is an approach to learning how
to predict a quantity that depends on future values of a given
signal. The name TD derives from its use of changes, or differences,
in predictions over successive time steps to drive the learning
process.

• Temporal Difference Learning is an unsupervised learning technique that
is very commonly used in reinforcement learning for the purpose of
predicting the total reward expected over the future.

https://www.engati.com/glossary/reinforcement-learning

TDL example

• TDL estimates the quantity, which depends on the feature signals

Q-Learning (Quality Learning)

• Q-learning is a variant of reinforcement learning algorithm that seeks
to find the best action to take given the current state.

• It uses Monte Carlo Policy.

• It observes reward for all the steps in the episode, where as TDL
observes only one step.

End of Unit - 5

End of the Course
Deep Learning Architecture

Dr.Srinath.S
Associate Professor and Head

Dept. of CS&E
SJCE, JSS S&TU
Mysuru- 570006

